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Fig. 1. Here we see some of the Qomplexity of a launch LOX TANK
vehicle engine. Credit NASA. s
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Space allows for faster communication amongst people |
around the world, advances in science and Lox T""\
understanding of our origins, opens up the possibilities
of new manufacturing techniques, and continues to
ignite the human passion for exploration. The entryway
to space is the launch vehicle. This vehicle has been
Sy . .ppe FUEL TANK: s-IC
extremely complex, prohibitively expensive, and difficult STAGE
to manufacture because the vehicle must sustain some
of the most extreme stresses and constant changing F-1 ENGINES (5)
environments during its life.
Traditional manufacturing has progressed over the

centuries with technologies constantly improving we are SATURN ¥
now capable of creating increasingly complex products.
This complexity has come at a cost. A more complex

product typically requires more complex tooling, more Fig. 2. Here we take note of the complexity

and thousands of parts that must be

complex tooling becomes increasingly difficult to manufactured by traditional manufacturing
produce and, with the exception of manufacturing at methods for a complete Saturn V launch
scale, much more expensive. vehicle. Also see the more detailed sketch at

the end of this document. Credit NASA.
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Syfte / Mal
Produce a launch vehicle capable of handling the stresses of reaching orbital flight and payload

deployment. Compare and contrast a traditional manufacturing technique and the basic methods
involved to a similar finished product made primarily with AM.

Here we will take an overview approach and attempt to understand the difference between additive
manufacturing and traditional manufacturing. We will describe how the process differs between
additive manufacturing and traditional manufacturing and show some of the benefits that AM brings
to the table.

Specifikation

Pointy end up, flames out the bottom, rocket goes up, must be strong enough to avoid rapid
unplanned disassembly, put x amount of payload into orbit and do this as cheaply and simply
possible.

There are some very specific thrust to weight ratios and the tyranny of the rocket equation(mass
limitations), physical limitations and stresses which will need to be considered here. Material choices
will be reliant on their respective properties and their ability to withstand the above stresses. Some
materials available are Aluminium honeycomb reinforced composites for lightweight yet stiff
structures like fairings and interstage, carbon fibre for propellant and other pressure vessels, metal
alloys for high stress tolerance and flexibility in engines, polymers for non structural applications, and
ceramics for thermal shielding.

Utkast / Idé-skiss

An overview sketch is required of the complete vessel. More detailed various modeling is required for
each component (pressure vessels, engine components, control system) as well as means of
interconnectedness of components.

Design / Konstruktion

Knowledge of manufacturing techniques of each material is required to design and optimize the
component for manufacture. Carbon for pressure vessels must be wrapped, cured, and removed
from moulds. Engine components must be individually designed to be fabricated and assembled.
Carbon composites must be designed to be built systematically to reduce amount of complex
curvature to accept the honeycomb core, glued and cured. Special care must be taken during design
in respect to thermal properties and interoperability of parts.

Beredning

Tooling for each part must be prepared: Moulds for carbon, composites and casting, machine tools to
convert raw materials into finished metal parts. Special care must be taken to optimize the finish and
fit. Special cradles and other support for the connection of large parts must be made.

Tillverkning / Efterbearbetning

Casting produces complex specialty parts through pouring liquid metal into moulds. Cast parts must
be removed from moulds and surfaced for connecting to other parts. CNC lathes and mills produce
components out of solid metal by removing unwanted materials revealing the finished parts. Carbon
composites are built up layer by layer systematically over a mould and baked in a vacuum
environment for curing. Moulds must be removed, excess material must be cut away and fittings
installed to connect to other parts. Much metal tubing is produced by extrusion for other propellant
delivery.
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Kvalitetskontroll

Constant measurements and quality control is carried out during the entire process from design to
manufacture. After manufacture of each component comes the pressure testing of pressure vessels,
test firing of engines, shock-load and vibration testing. After final assembly similar tests as listed
above are conducted to ensure a safe and functional vehicle.

Leverans / Montering

The finished vehicle is moved to the launch platform and propellant loaded in preparation of launch.

Hur skulle Additiv tillverkning kunna paverka ovan beskriven process?

What was once only a sci-fi dream of pressing a button and having a product appear before our eyes
is becoming a reality. Traditional manufacturing often starts with a hunk of raw material and chops
away at it until the finished product is remaining. Building of moulds and forms are used to pour
liguid metal into which then must be removed and dressed before the final product is available. Dies
must be machined before injecting a material into them and removing the part. While there will still
be a place for traditional manufacturing techniques, the potential for additive manufacturing to fill
our future needs seems almost limitless.

Currently a vast array of manufacturing techniques are used in the manufacture of an orbital launch
vehicle. Casting, machining, composite construction and tubular extrusion are some of the more
common techniques. All of these processes require much design and preparation before the part is
manufactured and then each part must be fitted to another part before the launch vehicle is
complete. This process can take months or years to complete and often requires very special tooling,
competence and many human labour hours to produce. All of this leads to higher complexity which
leads to higher costs. AM has amazing potential to streamline this process by reducing part count,
increasing design flexibility, and reducing costs.

Terran 1 Engine

Fig. 3. While in a different class than the F-1 engine we can clearly see the reduced part count on this mostly 3D
printed Terran 1 Engine by Relativity Space. Credit Relativity Space.
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Reduced Part Count and Complexity advantage.

AM allows for increased part complexity. The part count can be reduced from thousands to hundreds
by reducing the needs for fasteners and complex machined parts which must be fitted together after
fabrication. Pressure vessels can be printed with supports and propellant delivery systems built in.
Engines are full of specialty components and fluid cavities, all which can be optimised to become a
single structure under AM.

Increased design Flexibility and Quick turnaround.

Traditional manufacture benefits from high volume manufacturing. The manufacturing cost per part
typically can be reduced exponentially when producing high volume with the opposite effect
happening with low volume. The space launch vehicle industry is a low volume industry.
Furthermore, the mathematics of calculating vehicle stresses are extremely complex and very difficult
to simulate accurately therefore constant design and testing iterations are needed. AM excels with its
ability to produce flight capable parts after slight iterative changes.

Flexible production location and automation.

One very exciting possibility with AM versus traditional manufacturing is its ability to manufacture
anywhere, California, Kiruna, in earth orbit, or even on Mars. Reducing part count and manufacturing
techniques allows the process to break free from traditional tooling and size limitations.
Manufacturing in space by robotic means will open doors to new design concepts and strategies that
seem limitless.

Printing the Pressure Vessel

Fig. 4. Relativity Space has developed specific printing technology in order to print pressure vessels
for propellant. Credit Relativity Space.
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Reduced costs and a more capable final product.

Reduced part count, streamlined design to fabrication and flexible production location allows for the
potential reduction in cost of labor, tooling, manufacture and transport. Furthermore, mass is one of
the most expensive parts of a launch vehicle. For example in 2017 it could cost NASA as much as
80,000 USD to launch one kg to low earth orbit[1]. We can see how reducing mass is a key goal in
launch vehicle design. AM can achieve a reduction in mass by designing the strength only where
needed and leaving out unnecessary material or building special mass saving structure into the
vehicle. Furthermore, quick iteration allows for more testing which leads to more improvements
which leads us to a more capable final product.

Ovrigt / Fri skrivning/ Kommentarer / Bilagor

| approached this assignment as an overview. Realistically on our classroom scale we will be working
with individual parts instead of whole systems. Individual parts of each launch vehicle will benefit
from AM but | feel it is important for me to reconsider the system holistically to best utilize the
current strengths of AM with respect to this field.
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